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Abstract
The development of low-cost, highly efficient and stable non-precious metal electrocatalyst for
the oxygen reduction reaction (ORR) substituting Pt has attracted much attention. Herein, we
developed a promising structural platform for the fabrication of carbon nanospheres
functionalized with hollow nanostructures of M-NHCS (M=Fe, Co and Mn) based on metallo-
deuteroporphyrins (MDP). Benefited from the multi-layered active sites and hollow substrate
with more exposed active surface area, convenient channels for the transport of electrons, the
resulting Fe-NHCS electrocatalysts exhibit enhanced electrocatalytic performance in ORR with
an onset potential of 0.90 V (versus RHE), and a high selectivity in the direct 4-electron
pathway. The Fe-NHCS electrocatalysts also show a good methanol tolerance superior to Pt/C
catalysts and an extremely high stability with only 13.0 mV negative after 5000 cycles in
alkaline media. Experiments have verified that maintaining the multi-layered Fe−N−C active
sites and hollow substrate were essential to deliver the high performance for ORR. The work
opens new avenues for utilizing MDP-based materials in future energy conversion applications.

Supplementary material for this article is available online

Keywords: hollow carbon nanospheres, oxygen reduction reaction, non-precious metal catalysts,
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1. Introduction

With the increasing consumption of traditional energy, energy
shortage becomes a very serious problem in the world, and
the environmental pollution caused by the excessive use of
the nonrenewable energy resources also threatens the survival
and development of human beings, such as heavy smog,
global warming [1]. Developing the renewable, green and
clean energy is much desired [2–4]. At present, the most

promising alternatives for the capacity to efficient convert and
store renewable power sources are fuel cells [5] and metal-air
batteries [6–8]. Among them, polymer electrolyte membrane
fuel cells (PEMFCs) are considered to be of great importance
as the most advanced representative of fuel cell technologies
to provide cleaner energy conversion [9]. It has the advan-
tages of easy operation, high specific power, low operating
temperature, fast start-up and long lifespan [10–12]. How-
ever, the oxygen reduction reaction (ORR), occurring at the
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cathode of PEMFCs, exhibits the sluggish reaction kinetics,
which affects energy-conversion efficiency and blocks the
large-scale commercial applications of PEMFCs [10, 13, 14].
Platinum and its alloys are generally used as the effective
catalysts for ORR [15, 16], however, their suffers from high
cost, scarcity, poor methanol tolerance and low stability,
which has been the bottlenecks that hamper widespread
commercialization of PEMFCs [17–19]. Therefore, it is
highly challenging and desirable to prepare alternative the
low-cost catalysts with long-term stability and high electro-
catalytic performance for ORR [20].

During the past decades, the intensive studies have
demonstrated that earth-abundant and efficient non-precious
metal catalysts have become promising alternatives to Pt-
based catalysts, including transition-metal [21], metal oxide
[22, 23], metal nitrogen-doped carbon [24, 25] and metal-free
doped carbonaceous materials [26, 27]. Among the above
non-precious metal materials, the transition metal−nitrogen
−carbon (M−N−C) catalysts have been regarded as the most
promising substitute due to their high ORR activity and low-
cost [28–30]. Notably, macrocycles molecule, such as por-
phyrins, phthalocyanines contained abundant the metal (Fe or
Co)–N4 sites [31, 32]. The M−N4 structure is considered to
be the active site of ORR catalysts, it can be traced back to the
United States scientist Jasinski who discovered the cobalt
phthalocyanine molecule was mixed with Ni powder showed
excellent ORR activity [33]. However, the ability of macro-
cyclic structure against oxidative degradation is weak,
resulting in the deteriorated stability of catalysts. The current
solutions are used the high-temperature pyrolysis process of
macrocyclic metal-phthalocyanines or porphyrins precursor to
generate highly active metal-Nx sites to improve their stabi-
lity. Lu and co-workers reported the development of a cobalt
(II) porphyrin based porous organic polymer (CoPOP) and its
pyrolyzed derivatives as highly active ORR catalysts [34].
The as-synthesized CoPOP exhibits high porosity and
excellent catalytic performance stability. Although the active
species of metallic macrocycles are controversial, it is gen-
erally accepted that pyrolysis of the complexes enhance the
ORR activity. The amount of N and metal species of carbon
materials are essential to activities. with the help of N coor-
dination, the activity of metal species for ORR were enhanced
obviously [35]. Besides, the active sites of M−N4 have great
influence on ORR, but it is still great challenge to design
efficient metal nitrogen-doped carbon catalysts for
PEMFC [36].

Metallo-deuteroporphyrins (MDP) have been attracted
great attention due to the unique properties, wide derivatives
and relatively cheap cost, which also can act as an electro-
chemical sensor to detect hydrogen peroxide and oxygen in
the solution [37]. Pyrolyzed MDP as non-platinum catalyst
for PEMFC cathode catalyst application has few reported so
far. Therefore, it is necessary to deepen the research and
enrich the relevant basic and theoretical knowledge [38].

Herein, we applied a hard template method to construct
the high activity and stable multi-layered hollow carbon
sphere electrocatalysts (M-NHCS-X, M=Fe, Co and Mn,
X=600 °C, 700 °C, 800 °C and 900 °C). The amino-

functionalized silicon spheres were used as templates, and
MDP were used to as both carbon precursor and metal active
center. It is worth mentioning that MDP were chosen as
precursor because of well-defined structure, and versatile
functions, which can be grafted on the surface of amino-
functionalization of SiO2 nanospheres and then coated by
polypyrrole (PPy). After a facile carbonization process and
acid treatment to etch away SiO2 template, the electrocatalysts
were obtained. The multi-layered hollow carbon sphere cat-
alysts exhibit a favorable cathode catalyst in PEMFC appli-
cations as it contributes to excellent activity, superior
methanol-tolerant and stability for ORR.

2. Experiment

A series of MDP was prepared according to the method
described in the literature [39]. 3-aminopropyltriethoxysilane
was supplied by Nanjing YouPu chemical Reagents (China).
Hydrofluoric acid (HF, 40%) was purchased from shanghai
Macklin chemical Reagents (China). 5 wt% Nafion (DuPont,
US) and JM 20% Platinum carbon were purchased form
Kunshan pterson international trade chemical Reagents. The
distilled water was generated with a Mill-Q integral pure and
ultrapure water purification system. Other reagents, such as
ammonia, tetraethyl orthosilicate, anhydrous ethanol,
dichloromethane, triethylamine, toluene, sulfoxide chloride,
pyrrole, potassium hydroxideand Iron (III) chloride hexahy-
drate were obtained from Sinopharm Chemical Reagent Co.,
Ltd (Shanghai, China). All the chemicals used in this
experiment were analytical grade used without further
purification.

2.1. Synthesis of SiO2 nanospheres

Inspired by the classic StÖber method, we prepared the dif-
ferent sized silica spheres by our improved synthesis method.
Taking the synthesis of ∼320 nm silica spheres as an
example, 70 ml of absolute ethanol and TEOS (6 ml) were
mixed in beaker, 25 ml of distilled water and 2 ml of
NH3·H2O (28%) were added into the mixture with kept stir-
ring at 600 rpm for 2 h at room temperature. The obtained
product was separated by centrifugation, washed subse-
quently with the mixture of ethanol and distilled water for
third times, and finally dried up.

2.2. Synthesis of amino-functionalization of SiO2 nanospheres

SiO2 (4 g) was dispersed in 150 ml of toluene. The mixture
was sonicated for 30 min, subsequently injected into 4 ml of
3-aminopropyltriethoxysilane. The mixed solution was then
transferred into round bottle flask with refluxed and stirred at
110 °C for 5 h under nitrogen atmosphere. After cooling to
room temperature, the suspension was then filtered and the
solid residues were washed thoroughly with CH2Cl2 for twice
and finally dried at 80 °C under vacuum for 6 h to obtain
milky solid of SiO2–NH2.
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2.3. Synthesis of core−shell SiO2–NH2–MDP (M=Fe, Co and
Mn) nanospheres

MDP (0.6 g) was dispersed in 50 ml of CH2Cl2 under
sonication, where was added dropwise sulfoxide chloride
(0.4 ml). The mixed solution was then magnetically stirred at
110 °C for 4 h under nitrogen atmosphere. The solvent was
vacuumed and removed CH2Cl2 at 70 °C until the bottom
of the round bottle flask formed a black lump, followed
by added into 20 ml of CH2Cl2 under ultrasound to
form solution. The suspension subsequently vacuumed and
removed CH2Cl2 at 60 °C. Then SiO2–NH2 (0.5 g), 30 ml of
dichloromethane and 2.5 ml of triethylamine were added to
the above solution in turn. The mixture was refluxed and
stirred at 40 °C for 3 h. The suspension was then filtered and
the solid residues was washed thoroughly anhydrous ethanol
for several times, finally dried at 80 °C under vacuum for
overnight to obtain black brown solid of SiO2−NH2−MDP
(M=Fe, Co and Mn). The SiO2-MDP was prepared with
SiO2 under identical conditions for comparison.

2.4. Synthesis of pyrrole encapsulated on SiO2−NH2−MDP
nanospheres

0.3 g of SiO2−NH2−MDP was added to a mixture solution of
ethanol (50 ml) and distilled water (20 ml) under sonicated for
1 h. Then 0.3 ml of pyrrole was added and stirred for 30 min
The solution of 0.9 g FeCl3·6H2O dissolved in 30 ml of water
was added dropwise the above mixed solution. The derived
mixture vigorous stirring at 21 °C for 15 h. Finally, the
sample was successively washed several times with water
during filtration. The black solid was noted as
SiO2−NH2−MDP-ppy.

2.5. Synthesis of M-NHCS-X (X=600 °C, 700 °C, 800 °C,
900 °C), NHCS@Fe-700, Fe-HCS-700 and HCS-700

The Fe-NHCS-X and NHCS@Fe-700 were prepared
by thermal treatment of SiO2−NH2-Femin-ppy and
SiO2-Femin-ppy with a ramp rate of 5 °C min−1 at a temp-
erature ranging from 600 °C to 900 °C for 2 h in the pro-
tection of argon gas (denoted as Fe-NHCS-600, Fe-NHCS-
700, Fe-NHCS-800 and Fe-NHCS-900). After the carboni-
zation, the template of SiO2 template was removed by
hydrofluoric acid (40 wt%) at room temperature for 24 h and
collected by centrifugation, washed subsequently with water
and ethanol for third and finally dried at 80 °C under vacuum
for overnight. The corresponding Co-NHCS-X and Mn-
NHCS-X were prepared by the same procedure as for Fe-
NHCS. The Fe-HCS-700 and NCS-700 were prepared with-
out pyrrole and MDP, respectively, under identical conditions
for comparison.

2.6. Material characterization

The morphology, composition and structure of catalysts were
characterized by scanning electron microscopy (SEM)
(ΣIGMA/HD), transmission electron microscopy (TEM)
(JEOLJEM-2100), XRD (D/Max2500 with Cu Ka x-ray

source), Raman (HORIBA Xplora Plus), Brunauer−Emmett
−Teller (BET) (ASAP-2020). FT-IR (EQUINOX55), XPS
(the chemical states of N, C, Fe, and Co elements. All the
collected binding energies were calibrated by using the C1s
peak at 284.6 eV as the reference with an uncertainty of
± 0.2 eV).

2.7. Electrochemical measurement

All the electrochemical measurements were carried out at
room temperature with a Gamry Reference 3000 potentiostat
was employed, together with a Gamry’s Rotating Disk
Electrode (RDE710) equipped with a conventional three-
electrode system. Ag/AgCl electrode (saturated with KCl,
0.1989 V versus RHE) and graphite rod (Gamry, USA) were
used as reference and counter electrode, respectively. A RDE
with a glassy carbon (GC) disk with a diameter 5 mm (surface
area=0.196 25 cm2) was used as the working electrode. The
preparation of a working electrode is as follows: 8.0 mg of the
as-prepared samples was dispersed in 1.0 ml of ethanol with
50 μl of 5 wt% Nafion solution by sonication to obtain a
homogeneous black suspension solution for 1 h, the 10 μl of
ink was pipetted onto the GC disk electrode surface and
allowed to dry with infrared lamp for 5 min, resulting in
catalyst loading of 0.4 mg cm−2. For comparison, Pt/C was
used as the baseline catalyst under the same measuring con-
ditions. The electrolyte was bubbled with O2 for about 30 min
to achieve the O2-saturated solution before each test. The
cyclic voltammetry (CV) experiments were cycled in 0.1 M
KOH solution under O2 or N2–saturation conditions with a
scan rate of 50 mV s−1. The RDE measurements were per-
formed at various rotating speed from 400 to 2500 rpm in
0.1 M KOH solution under O2–saturation conditions with a
scan rate of 10 mV s−1 at room temperate. During the mea-
surement, oxygen was only passed over the surface of the
electrolyte. Moreover, the accelerate durability tests (ADT)
was used to evaluate the stability of M-NHCS-X (M=Fe,
Co and Mn) under continuous O2-bubblings 0.1 M KOH
solution using potential cycling between 0.87 V and 1.17 V
with the sweep rate of 100 mV s–1 at room temperature.

3. Results and discussion

3.1. Synthesis and characterization

The preparation strategy of the M-NHCS-X (M=Fe, Co,
and Mn, X=600 °C, 700 °C, 800 °C and 900 °C) is briefly
illustrated in Scheme 1. Typically, the preparation involves
three steps. Firstly, the grafting of MDP onto the surface of
amino-functionalized SiO2 nanospheres by amidation reac-
tion. Then, PPy nano-coating is carried out by the controlled
polymerization of pyrrole around the SiO2−NH2−MDP
nanospheres in the presence of FeCl3·6H2O at room temper-
ature. Finally, as-obtained SiO2−NH2−MDP nanospheres
was converted to M-NHCS-X by thermal annealing at
temperature ranging from 600 °C to 900 °C under Ar
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atmosphere, followed by HF etching to remove SiO2

template.
The morphology and microstructure of the as-synthesized

materials were determined by SEM and TEM. SEM images of
SiO2 nanospheres and M-NHCS-X (M=Fe, Co and Mn)
catalysts are shown in figures 1 and S1–2 (available online at
stacks.iop.org/NANO/32/235401/mmedia). The highly
uniform SiO2 nanospheres with a smooth spherical morph-
ology and a diameter of ∼340 nm could be obtained by the
StÖber method. The SiO2 spheres are intact, discrete, and
monodisperse. After coating and carbonization, the surface of
as-prepared particles became much rougher and kept the SiO2

spheres shape (figures 1(b), S1 and S2). The outer diameter
and the wall thickness of as-prepared particles are estimated
to be ~340 nm and 20 nm, respectively (figure 1(d)), in
agreement with the size of SiO2 templates. The uniform
hollow structures are confirmed by a few broken nanospheres
with clearly exposed internal cavities (figure 1(c)) and TEM
(figure 1(d)). The high-angle annular dark field-scanning
transmission electron microscope (HAADF-STEM) image
and mapping analysis of Fe-NHCS-700 (figure 1(e)) reveal
that C, N, Fe and O are homogeneously distributed along the
catalyst, which could also be observed from the results
obtained by the full spectrum of XPS (figure S7).

X-ray diffraction was performed to investigate the crys-
tallographic phase of the as-prepared composites. The XRD

Scheme 1. Schematic illustration of preparation procedures for the M-NHCS (M=Fe, Co and Mn).

Figure 1. SEM images of (a) SiO2 nanospheres and (c) Fe-NHCS-X.
(b) the diameter distribution histogram of SiO2 nanospheres (d) TEM
image and (e) HAADF-STEM image of Fe-NHCS-700 and
corresponding elemental mappings of C, Fe, N and O.
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patterns of M-NHCS-X are presented in figure 2(a) and S3.
Obviously, Fe-NHCS-X show a broad diffraction peak and
weak peaks at around 26.5° and 43°, corresponding to the
(002) and (100) plane of the graphite structure (PDF#41-
1487) [40], respectively, while the well-defined peak at
around 2θ = 18.3° match well with Fe3O4 (PDF#75-0033),
implying the presence of graphitic carbon and Fe3O4 in
Fe-NHCS-X [41]. The functional groups present in the
M-NHCS-X electrocatalyst were characterized using Fourier
transform infrared spectrometer (FT-IR). Figure 2(b) shows
that the FT-IR spectrum of Fe-NHCS-X electrocatalysts.
In contrast, the FT-IR of SiO2 nanospheres were given for
index. The wider peak at around 3444 cm−1 corresponds to
the N−H stretching vibration and the peak at around
2900–2800 cm−1 is saturated C−H stretching vibration. The
absorption peak at around 2300–2360 cm−1 corresponds
to C−O stretching vibration. FT-IR showed a strong band at
1105 cm−1, which is antisymmetric stretching vibration peak
of Si−O−Si, as well as the peak at around 943 and 802 cm−1,
which can be assigned to symmetrical telescopic vibration
peak and the bending vibration peak of Si−O−Si, respec-
tively. The without SiO2 template of M-NHCS-X has almost
the same infrared spectrum (figure 2(b) and S4), indicating
successful replication of the template, and SiO2 sphere used in
the experiment has been basically eliminated after acid
etching.

Raman spectroscopy is widely used to investigate the
graphitic structures, defects and disordered phases of as-pre-
pared catalyst hybrids. Figure 2(c) shows the Raman spectra
of Fe-NHCS-X flakes, and displays two characteristic peaks
at 1329, 1590 cm−1, which were assigned to the D and G
bands, respectively. The D band corresponds to sp3 defects
and disordered sites, the G band refers to the sp2-hybridized
graphitic structure and usually corresponds to the degree of
graphitization [42]. The relative intensity ratio of the G band
and D band peaks (ID/IG) is used to estimate the amount of
defects and disordered structures in the carbon structure. The
small ID/IG value suggests the presence of more ordered
graphitic carbon, which improves the electrical conductivity
and is beneficial for the electron transfer during ORR. The
ID/IG values of Fe-NHCS-X (X from 600 °C to 900 °C) are
1.10, 1.05, 1.03 and 1.02, respectively (figure 2(b)), as well as
the ID/IG values of Co-NHCS-X are 1.15, 1.12, 1.10 and 1.05
(Figure S5), respectively, implying that a higher pyrolysis
temperature promotes the formation of an ordered graphitic
structure of the carbon. Notably, compared with Co-NHCS-
700 (1.12), the ID/IG value observed for Fe-NHCS-700 was
1.05, demonstrating the higher graphitization degree of Fe-
NHCS-700, and carbon graphitization in the catalysts can
enhance the electronic conductivity and corrosion resistance
in electrocatalysis [43, 44]. M-NHCS-X were evaluated by
measuring the N2 adsorption−desorption isotherm techniques

Figure 2. (a) XRD patterns of the Fe-NHCS-X. (b) FT-IR spectra of Fe-NHCS-X and SiO2 nanospheres. (c) Raman spectra, (d) N2 adsorption
−desorption isotherm at 77 K and the corresponding pore size distribution (BJH method) of the Fe-NHCS-X.
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at 77 K to explore the change of pore structure and surface
area. According to the curves of M-NHCS-X, the type IV
isotherm and H4-type hysteresis loops following the IUPAC
classification can be observed in figures 2(d), S6(a) and S6(c),
suggesting the existence of mesopores for M-NHCS-X sam-
ples [45]. The BET surface area of hollow Fe-NHCS-700
spheres is 133.4 m2 g−1 after etching, which is significantly
larger than that of other samples, while the specific data for all
samples were summarized in table S1. However, the nitrogen
isotherm of Fe-NHCS-700 exhibits a significant rise at a high
relative pressure, suggesting the porous structure derived
from the hollow interior. The Barrett−Joyner−Halenda
(BJH) pore size distribution curves (figures 2(d), S6(b) and
S6(d)), further confirms the presence of porous structure in
the obtained HNSs with a pore size centered at 7.9 nm for Fe-
NHCS-700, 5.1 nm for Co-NHCS-700, and 15.1 nm for Mn-
NHCS-700, respectively (table S1). It is mentionable that
porous architecture with a large specific surface area of the
Fe-NHCS-700 is beneficial for facilitating the exposure of
more active sites and the electron/ion transportation effi-
ciently, thus improving electrochemical activities of the
composites.

The Fe-NHCS-700 were further analyzed by depth XPS
with different etching times of Ar ion treatment to investigate
the difference of chemical composition and surface electronic
state (figures 3(a)–(b) and S7). As etching time increases, the
N/Fe ratio of content for the Fe-NHCS-700 decreases (12.2 at
0 s and 4.87 at 240 s, etc), which is indicting multi-layered
structure from surface to interior. As shown in figure S8(a),
the XPS full survey of Fe-NHCS-X exhibits several sharp
peaks, indicating the presence of C, N, and O in the obtained
composites. Figure S8(b) shows the high-resolution Fe 2p

spectrum. The peaks at 710.8 and 713.7 eV can be assigned to
the binding energies of the 2p3/2 orbitals of Fe2+ and Fe3+

species, respectively. For the 2p1/2 band, the peak at 725.2 eV
is attributed to the binding energy of Fe2+, and the peak for
Fe3+ is observed at 726.4 eV. The satellite Fe 2p3/2 peak at
718.6 eV also indicated the existence of iron oxide phase in
the carbon material [25]. And no peak between 700.0 and
708.0 eV is assigned to zero-valence iron, indicating that the
iron atom is mostly coordinated with the surrounding nitrogen
atoms [46, 47].

As shown in figures 3(c)–(f), the high-resolution spectra
of N 1s region can be fitted with three peaks at 398.4, 399.2,
400.8, 402.4 and 404.2 eV assigned to the coexistence of
pyridinic, Fe−Nx, pyrrolic, and graphitic nitrogen species and
oxidized N, respectively, suggesting that N is doped into the
carbon molecular skeleton [48, 49]. The previous studies
suggested that the nitrogen-doped carbon materials show
excellent charge mobility in the carbon atom matrix, which
can accelerate the catalytic activity in electron-transfer reac-
tions. In contrast, the Fe-NHCS-700 sample has the relative
largest content of pyridinic N and Fe−Nx content, which can
be responsible for the electrocatalytic activity in ORR
[50–52].

3.2. Electrochemical evaluation

To assess the electrocatalyst activities of Fe-NHCS-X, Co-
NHCS-X and Mn-NHCS-X for ORR, as-synthesized elec-
trocatalyst was tested in O2-saturated 0.1 M KOH electrolyte
were recorded at a scan rate of 50 mV s−1. Figure 4(a) and
figure S9 shows the CV measurements of Fe-NHCS-X. The
significant reduction peak was observed at 0.78 V in the

Figure 3. (a) Depth XPS full spectra and (b) N/Fe ratio for Fe-NHCS-700 at different Ar etching time of 0, 60, 120, 180 and 240 s. High-
resolution N 1s of the (c) Fe-NHCS-600, (d) Fe-NHCS-700, (e) Fe-NHCS-800 and (f) Fe-NHCS-900.
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O2-saturated solution, while within the same voltage window,
only featureless quasi-rectangular voltammogram is observed
in N2-saturated electrolyte. To further examine the ORR
activity of Fe-NHCS-X, Co-NHCS-X, and Mn-NHCS-X
were investigated by using RDE experiments at 1600 rpm in
O2-saturated 0.1 M KOH solution (figure 5(d)). Pt/C catalyst
was used for comparison (figure 4(b)). The results suggest
that the Fe-NHCS-700 electrocatalyst has the high onset ORR
potential (Eonset) of 0.90 V and half-wave potential (E1/2) of
0.79 V, which is superior to the other three materials catalysts
(Fe-NHCS-600, 800 and 900), Co-NHCS-X catalysts and
Mn-NHCS-X catalysts (figures S11(a)–(d)), and approaches
to the Pt/C tested under similar conditions (Eonset=0.94,
E1/2=0.83 V), and outperform most previously reported
ORR catalysts (table S3). The corresponding calculated kin-
etic limiting current densities at (Jk) at 0.47 V of Fe-NHCS-X
is 1.90, 3.90 3.43, and 2.10 mA cm−2 (figure S10), respec-
tively. These results further verify that the Fe-NHCS-700
catalyst displays faster ORR electrocatalytic reaction kinetics
than the Co-NHCS-X and Mn-NHCs-X catalysts. According
to the LSV curves, the calculated Tafel slope of Fe-NHCS-
700 catalyst (95.8 mV dec−1) was close to Pt/C (92.0 mV
dec−1), suggesting the superior ORR kinetics of Fe-NHCS-
700 and the advantage of hollow sphere structures for elec-
trocatalytic activity (figure 4(c)).

To assess the electron-transfer mechanism, LSV were
measured at a rate of 10 mV s−1 under rotation speeds of 400,
600, 900, 1200, 1600, and 2500 rpm. Then, the Koutecky–
Levich (K–L) equation was used to calculate the electron-
transfer number (figure 4(d)). The fitted lines suggested that
the n value of Fe-NHCS-700 is 3.90, which is close to Pt/C

(3.93) at 0.47 V, indicating the desired 4-electron oxygen
reduction process and the reduction of O2 to OH−, as well as
the similar electron-transfer numbers at different potentials. In
contrast, the electron-transfer numbers of Co-NHCS-X in the
wide range was nearly 2, indicating the Co-NHCS-X is
2-electron reduction pathway (figures S11(b), (c)), and the
electron-transfer numbers of Mn-NHCS-X in the wide range
was nearly 3, indicating the Mn-NHCS-X involves a mixed
2-electron/4-electron transfer pathway for ORR (figures S11
(e), (f)). Furthermore, the Fe/N ratio associated with the ORR
activity was also investigated in figure 4(e), and the Fe-
NHCS-700 (6.6%) with the highest Fe/N ratio showed a
better ORR activity than that of the Fe-NHCS-600 (1.3%),
and Fe-NHCS-800 (5.6%) and Fe-NHCS-900 (4.7%) cata-
lysts. The more real active sites of Fe−Nx and pyridine N in
the Fe-NHCS-700 catalyst were considered to be the active
sites for enhancing the ORR activity [53].

Additionally, the methanol tolerance is also a significant
index for the cathode materials of practical application in
PEMFC. The Pt/C catalyst generally displays imperfect
performances (figure S12). However, the Fe-NHCS-700 is
resistant to methanol poisoning, exhibiting negligible
decrease in current density, except for a slight oscillation. The
Fe-NHCS-700 against methanol influence can be attribute to
the doped N atoms and multi-layered active sites that can
improve the electronic density, and enables the NHCSs to be
electronically more negative, facilitating the reduction of O2

rather than oxidation of methanol. An ADT was assessed by
cycling the catalyst between 0.87 V and 1.17 V versus RHE
was used to evaluate the stability of Fe-NHCS-700, Co-
NHCS-700 and Mn-NHCS-700 at scan speed of 100 mV s−1

Figure 4. (a) CV curves of Fe-NHCS-700 catalysts in KOH solution saturated by N2 or O2 at a scan rate of 50 mV s−1. (b) ORR polarization
curves of Fe-NHCS-X (X=600, 700, 800 and 900) and commercial Pt/C electrodes and (c) Tafel plots of Fe-NHCS-700 and Pt/C at a
rotation rate of 1600 rpm at a scan rate of 10 mV s−1. (d) K−L plots of the Fe-NHCS-700 derived from data in the inset under different
potentials. (e) The Fe/N ratio of the as-prepared Fe-NHCS-X with respect to the ORR activity. (f) LSV curves of the Fe-NHCS-700 catalysts
for ORR in O2-staurated 0.1 M KOH before and after 5000 cycles.
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and then recording LSV sweeps at a scan rate of 10 mV s−1

with a rotational rate of 1600 rpm in O2-saturated 0.1M KOH
(figures 4(f) and S13). It can be seen that Fe-NHCS-700
exhibits a relatively smaller negative shift (13.0 mV versus
20 mV) in the E1/2 value after 5000 cycle than Co-NHCS-700
(14.0 mV) and Mn-NHCS-700 (15.6 mV), revealing the
better long-term stability of Fe-NHCS-700.

To assess the effects of different carbon coating for ORR,
as-synthesized electrocatalysts were investigated by using
RDE experiments at 1600 rpm in O2-saturated 0.1 M KOH
solution. As shown in figure 5(a), it can be seen that Fe-HCS-
700, NHCS@Fe-700 and Fe-NHCS-700 have the same half-
wave potential. Owing to the three samples have the carbo-
nated MDP as the main active sites, making the activity
stronger than that of hollow carbon spheres without MDP
layer. The onset potential of Fe-NHCS-700 is higher than that
of Fe-HCS-700, which indicates that the hollow carbon
spheres coated by the outermost polypyrrole are more active
than those exposed to the surface of MDP. The active species
of MDP pyrolysis are easy to distribute on the surface of
carbon layer, the strong acid or alkali conditions of the
receptor system leads to the corrosion of outer carbon, which
leads to the loss of active species formed by metal elements
and nitrogen, thus reducing the oxygen reduction activity of
the material. The Fe-NHCS-700 coated by polypyrrole

carbonization can act as a protective clothing. In addition, the
amount of nitrogen doping is increased, and the oxygen
reduction activity is increased. The onset potential and half-
wave potential of NHCS-700 are lower than those of the other
three materials. Besides, the electron-transfer numbers of
NHCS-700 can be regarded as the 2-electron pathway
(figures 5(b)–(c) and S14), indicating that the activity of the
main active sites of electrocatalyst without MDP intermediate
layer is significantly lower than the samples with MDP as the
main active sites [24]. It further verifies that the intermediate-
layer MDP as the main active site is important role of
materials in the sample. Compared to NHCS@Fe-700, Fe-
NHCS-700 has higher onset potential and limiting current
density, indicating the more rapid charge transfer attributed to
the hollow nanostructure can expose very high fraction of
surface sites. The multi-layered hollow carbon spheres elec-
trocatalysts have large surface area and allow for increased
collision frequency by confining reactants within nanoscale
space.

4. Conclusion

In summary, we report a metallo-deuteroporphyrin-assisted
strategy for synthesis of hollow carbon nanospheres decorated

Figure 5. (a) RDE linear sweep voltammograms curves of Fe-NHCS-700, NHCS@Fe-700, NHCS-700 and Fe-HCS-700 electrodes in
O2-saturated 0.1 M KOH. Rotative rate: 1600 rpm. (b) K−L plots of the samples. (c) The number of electron transfer values. (d) ORR
polarization curves of Fe-NHCS-700, Co-NHCS-700 and Mn-NHCS-700 electrodes at a rotation rate of 1600 rpm at a scan rate of
10 mV s−1.
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with various metal nanoparticles. The Fe-NHCS-700 catalyst
exhibited excellent catalytic activity for ORR with high tol-
erance towards methanol and great stability among the Fe-
NHCS-X, Co-NHCS-X and Mn-NHCS-X catalysts studied.
The onset potential of the Fe-NHCS-700 catalyst (0.90 V)
was close to Pt/C (0.94 V) catalyst. The electron transfer
number (n) involved in the ORR was calculated to be 3.90 at
0.47 V, illustrating a high selectivity in the direct 4e− path-
way and the full reduction of O2 to OH− through the direct
4e− mechanism. The enhanced ORR properties were ascribed
to the iron atoms coordinated N atoms, and hollow multi-
layered nanostructures that were essential to deliver the high
performance with transporting electrons for ORR. The
approach provided a promising structural platform for the
fabrication of carbon nanospheres functionalized with hollow
nanostructures of M−N−C.
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